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Abstract
We study a decidable fixpoint extension of tem-
poral description logics. To this end we employ
and extend decidability results obtained for various
temporally first-order monodic extensions of (first-
order) description logics. Using these techniques
we obtain decidability and tight complexity results
for various fixpoint extensions of temporal descrip-
tion logics.

1 Introduction
Monodic temporal extensions of various (decidable) frag-
ments of first-order logic have been studied employing the
quasi-model approach of Wolter and Zakharyashev [Hodkin-
son et al., 2000; 2001]. Their technique has been successfully
applied to a variety of decidable fragments, e.g., to the ALC
and DLR description logics, to the guarded fragment GF , or
to the two variables fragment. In addition, the complexity of
the decision procedures for these fragments has been studied
[Hodkinson et al., 2003]. All these papers have focused on
the standard first-order temporal logic that uses the U (un-
til) and S (since) connectives [Artale and Franconi, 2005;
Lutz et al., 2008], save [Gabbay et al., 2003] that studies an
extension of a multi-modal (but still first-order) logic.

However, first-order temporal logics have been shown to
lack certain expressiveness related, e.g., to expressing peri-
odic events. This shortcoming has been identified by Wolper
[Wolper, 1983] and various extensions have been proposed,
e.g., the extended temporal logic (ETL) [Wolper, 1983] and
the temporal fixpoint calculus [Vardi, 1988].

Simple temporal fixed point extensions of description log-
ics have been considered in [Franconi and Toman, 2003] that
enhances the temporal part of the language instead of varying
the first-order fragment. That paper shows that the original
quasimodel technique is amenable to using a much more ex-
pressive language over the temporal structure, while retaining
decidability for many of the fragments studied in the US case.
However, the temporal description logic proposed in that pa-
per disallows all of the interactions between the temporal fix-

points and the role constructors in the underlying description
logic.

This paper addresses that shortcoming by allowing fixpoint
operators to interact with role constructors of the underlying
description logic: this way resolves one of the open problems
proposed by [Franconi and Toman, 2003].

In order to focus on the actual temporal dimension of the
problem, the results of our paper are formulated with respect
to a basic description logicALC. However, the results can be
extended to other dialects of description logics and likely to
many other decidable fragments of first-order logic, provided
they satisfy the monodicity restriction of [Hodkinson et al.,
2000]. The results are as follows:

• We introduce a decision procedure for ALCµTL, a tem-
poral description logic with future time temporal oper-
ators that is strictly more expressive than ALCU . The
extension is based on the temporal fixpoint calculus
[Streett and Emerson, 1984; Vardi, 1988];

• We provide tight complexity bounds on the decision pro-
cedure that mirror those forALCU . Thus, from the com-
plexity standpoint, the extension is for free;

• We show that a similar technique works also for
ALCµTL extended with past connectives that properly
extends the logic ALCUS ; and

• We briefly discuss how the proposed extension can be
applicable to other more expressive dialects of descrip-
tion logics, e.g., ALCO, ALCQ, and others.

The paper is organised as follows: Sections 2 and 3 provide
the necessary definitions and discuss the properties of the pro-
posed logic. Section 4 presents decidability of the tempo-
ral fixpoint extension of a simple description logic ALC. It
also presents complexity bounds for the associated reasoning
problems. However, due to a heavy reliance on a rather com-
plex quasimodel machinery [Hodkinson et al., 2000], we will
only give a outline of the main steps needed to prove the main
claim of the paper. Section 6 discusses the applicability of the
results to a wider range of description logics and other decid-
able fragments of first-order logic. Section 7 concludes with
directions for future research.



2 Definitions
We start with defining ALCµTL, the temporal fixpoint exten-
sion of the standard description logic ALC:

Definition 1 (ALCµTL syntax) Concepts in the language
ALCµTL are defined by the following abstract syntax:

C,D ::=A | > | ⊥ | ¬C | C uD | C tD
| ∀R.C | ∃R.C | #C | µA.C,

where # is the usual next-time temporal operator. For the
fixpoint concept µA.C—where A is an atomic concept—we
require that free occurrences of A in the concept expression
C are all positive, i.e., they appear within even numbers of
negations and in addition in the scope of at least one next
time (#) operator.

Formulas of ALCµTL are defined by the abstract syntax

ϕ ::= C v D | ¬ϕ |x |ϕ ∧ ψ |ϕ ∨ ψ |#ϕ |µx.ϕ.

Similar to concepts descriptions, the propositional variable
x in µx.ϕ can only appear in ϕ under an even number of
negations and must be in the scope of at least one# operator.

Informally, the concept µA.C denotes the least fixpoint solu-
tion to the equationA = C(A), where C is seen as a set to set
function of the concept variable A. Similarly, µx.ψ denotes
the least solution to the x ≡ ψ equation.

The restriction on formation of the fixpoint constructs en-
sures that the fixpoint is well defined and truly temporal;
indeed we will see that this restriction makes the descrip-
tion logic part of ALCµTL essentially a fragment of first-
order logic. The greatest fixpoint operator can be defined,
as expected, as νA.C = ¬µA.¬C[¬A/A] for concepts and
νx.ϕ = ¬µx.¬ϕ[¬x/x] for formulas of ALCµTL.

Definition 2 (ALCµTL semantics) An ALCµTL interpreta-
tion structure is a triple I = (T ,∆, (·)I(t)) where T is a
flow of time based on natural numbers, ∆ is a non-empty do-
main of objects, and (·)I(t) is an interpretation function that
for every t ∈ T provides an interpretation for concepts and
roles at time t, i.e., CI(t) ⊆ ∆ and RI(t) ⊆ ∆ × ∆. The
interpretation must satisfy the following conditions:

>I(t) = ∆
⊥I(t) = ∅

(¬C)I(t) = ∆ \ CI(t)
(C uD)I(t) = CI(t) ∩DI(t)
(C tD)I(t) = CI(t) ∪DI(t)
(∀R.C)I(t) = {i ∈ ∆ | ∀j . RI(t)(i, j)⇒ CI(t)(j)}
(∃R.C)I(t) = {i ∈ ∆ | ∃j . RI(t)(i, j) ∧ CI(t)(j)}

(#C)I(t) = CI(t+1)

(µA.C)I(t) =
⋃
k≥0(Ck[⊥/A])I(t)

where Ck[⊥/A] stands for the concept description obtained
by unfolding a fixpoint concept k times1. Note that we make
the constant domain assumption, i.e., ∆ does not change over
time.

Given a formula ϕ, an interpretation I, and a time point t ∈
T , the truth-relation I, t |= ϕ (ϕ holds in I at time instant t)
is defined inductively as follows:

I, t |= C v D iff CI(t) ⊆ DI(t)
I, t |= ¬ϕ iff I, t 6|= ϕ
I, t |= ϕ ∧ ψ iff I, t |= ϕ and I, t |= ψ
I, t |= ϕ ∨ ψ iff I, t |= ϕ or I, t |= ψ
I, t |= #ϕ iff I, t+ 1 |= ϕ
I, t |= µx.ϕ iff I, t |= ϕk[false/x] for some k ≥ 0

where false is a shorthand for p ∧ ¬p. A formula ϕ is
satisfiable if there is a temporal interpretation I such that
I, 0 |= ϕ; I is then called a model for ϕ.

A concept C is satisfiable if there is an interpretation I such
that CI(t) 6= ∅ for t = 0. We say that ϕ is globally satisfiable
if there is an interpretation I such that I, t |= ϕ for every t
(I |= ϕ, in symbols). We say that ϕ (globally) implies ψ and
write ϕ |= ψ if we have I |= ψ whenever I |= ϕ.

Note that a concept C is satisfiable iff ¬(C v ⊥) is satisfi-
able, a formula ϕ is globally satisfiable iff 2ϕ is satisfiable,
and ϕ |= ψ iff 2ϕ∧¬ψ is not satisfiable2. Thus, all reasoning
tasks connected with the notions introduced above reduce to
satisfiability of formulas.

In the rest of the paper we also assume that all concepts and
formulas are in negation normal form (NNF), i.e., negations
are only applied to primitive concepts and primitive formulas.
It is easy to see that every concept (formula) in ALCµTL has
an equivalent concept (formula) in NNF.

3 Properties of ALCµTL

The language we have introduced so far has clear advantages
over the description logic ALCU , for example, the addition
of fixpoints allows us to express the notion of evenness and
periodicity, properties not expressible inALCU . On the other
hand, the U (until) operator and the other standard temporal
connectives of ALCU can be encoded in the logic with fix-
points ALCµTL as follows:

3C ≡µA.(C t#A) (eventually C)
2C ≡ νA.(C u#A) (always in the future C)

C U D≡µA.(D t (C u#A))

Moreover, based on results on the expressive power of propo-
sitional linear time temporal logics [Wolper, 1983] we can
prove the following:

1Due to the restrictions on the occurrence of A in C, this defini-
tion is equivalent to the more common intersection of models defini-
tion [Calvanese et al., 1999; Vardi, 1988].

2The 2 operator (read always in the future) will be defined in
Section 3.



Proposition 3 ALCµTL is more expressive than ALCU .

A typical example of the additional expressive power of
ALCµTL would be a property which should hold true every
k time points, starting from the current one. For example, a
catholic priest celebrates the Mass every seven days:

Celebrating-Catholic-Priest .
=

νA.(∃celebrate.Catholic-Mass u#######A)

Observe that, in the fragment introduced in the previous sec-
tion, the descriptions within a single state are purely first-
order; the fixpoint operator only affects the temporal part of
the language and it does not change the first order nature of
the description logic.

Note also that in this fragment it is impossible to express
temporalised roles (temporal operators cannot be applied on
roles). It is well known that allowing these would lead to an
undecidable satisfiability problem even inALCU [Hodkinson
et al., 2000].

4 Decidability and Complexity of Reasoning
Now we study the computational properties of ALCµTL. We
consider only the natural numbers-like flows of time T =
(N,<).

We first introduce the necessary background definitions re-
lated to the quasimodel-based technique used to show de-
cidability of various monodic temporal extensions of decid-
able fragments of first-order logic [Hodkinson et al., 2000;
Wolter and Zakharyaschev, 1999]. We modify these to suit
ALCµTL over the flow of time (N,<).

Consider a formula ϕ ∈ ALCµTL. We define sets of
formulas and concepts, subϕ and conϕ to be the closures
under negations of all subformulas and subconcepts of ϕ,
ψ[µx.ψ/x], and D[µA.D/A] for each fixpoint subformula
µx.ψ and fixpoint concept µA.D in ϕ; a natural extension
of the idea of the Fischer-Ladner closure of ϕ with respect
to its subformulas and subconcepts [Fisher, 1979]. We also
assume that all concepts (formulas) the form #C (#ψ) have
been replaced by unique auxiliary primitive concepts A#C
(propositions p#ψ), respectively, that do not appear in ϕ.

Definition 4 (Quasiworlds for ϕ) Given an ALC interpre-
tation I (that interprets primitive symbols in ϕ and the above
auxiliary symbols), we define a quasiworld wI for ϕ to be the
tuple〈{
{C ∈ conϕ : a ∈ CI} : a ∈ ∆

}
, {ψ ∈ subϕ : I |= ψ}

〉
Were constants (ABox or nominals) allowed, the quasiworlds
would need an additional component accounting for the be-
haviour of these constants. The important observations at this
point are that, for a fixed formula ϕ, (1) there are only finitely
many (distinct) quasiworlds, and (2) for decidable description
logics, they can be effectively constructed.

The interpretations I for the individual quasiworlds will
eventually serve as templates for models of single states in an

overall model for ϕ. In turn sequences of quasiworlds will
serve as abstractions of models of ϕ.

However, these abstractions must be coherent along the
temporal dimension. This, in particular, requires that the aux-
iliary concepts and formulas standing for temporal subcon-
cepts and subformulas behave according to the underlying
temporal semantics, in particular

1. for least fixpoints there must not be infinite regenerating
sequences, and

2. the auxiliary concepts and formulas must behave accord-
ing to the definitions of temporal connectives.

First we need to guarantee that the abstraction prevents in-
finite sequences of unfolding of a least fixpoint that appears
in ϕ as a subconcept or a subformula. To achieve this goal
we need to detect such sequences in a potential quasimodel
by considering repetitive unfolding of fixpoints along time,
called regeneration. For this we need an auxiliary definition
of derivation that tells us how later instances of fixpoint sub-
formulas have been derived from earlier ones. We employ an
extension of choice function introduced by Street and Emer-
son [Streett and Emerson, 1984] for µTL:

Definition 5 (Choice Relations and Adornment) Let W =
〈wi : i ∈ N〉 be a sequence of quasiworlds of the form
〈Ti,Ψi〉, indexed by natural numbers. We say that a relation

ADRNC : N × 2conϕ × conϕ× 2conϕ × conϕ

is a concept adornment of W if, for each time instant i ∈ N ,
each type t ∈ Ti and every conceptD ∈ t of the formC1tC2,
∃R.C, or A#C , it satisfies

ADRNC(i, t, C1 t C2, t, E)
ADRNC(i, t,∃R.C, t′, C)
ADRNC(i, t, A#C , t

′′, C)

where E is either C1 or C2, t′ ∈ Ti such that C ∈ t′ and
whenever ∀R.E ∈ t then E ∈ t′, and t′′ ∈ Ti+1 such that
C ∈ t′′. Moreover, for each triple i, t, and D there is at least
one tuple in the relation ADRNC. We say that a relation

ADRNF : N × subϕ× subϕ

is a formula adornment of W if, for each time instant i and
every formula ψ ∈ Ψi of the form ψ1 ∨ ψ2 it satisfies

ADRNF(i, ψ1 ∨ ψ2, δ)

where δ is either ψ1 or ψ2 and such that for each tuple i and
ψ there is at least one tuple in the relation ADRNF.

Intuitively, the adornment relation ADRNC tells us how dis-
junctions and existential restrictions are to be satisfied in the
abstraction: we use relations to represent the adornments to
capture the fact that, e.g., the concept ∃R.D can be realized
in several ways in a particular model and thus in its abstrac-
tion3. Similarly, ADRNF handles disjunctions in ALCµTL

formulas.
3[Streett and Emerson, 1984] use a partial function instead.



It is easy to see that, whenever a sequence of quasiworlds
faithfully represents an actual model of anALCµTL formula,
the adornment relations, as defined above, exist and represent
at least a partial functions, i.e., each disjunction and existen-
tial restriction (in each type of every quasiworld) must have
a realization—represented as a tuple in these relations. Con-
versely, given a sequence of quasiworlds with an adornment,
we can construct a model for each wi ∈ W that corresponds
to the adornment (by appropriately realizing disjunctions and
existential restrictions.

Hence, given a sequence W = 〈wi : i ∈ N〉 of quasi-
worlds of the form 〈Ti,Ψi〉 and with the help of the adorn-
ments ADRNC and ADRNF we can define a derivation of
concepts, denoted by `, for concepts in the type t ∈ Ti, as
follows:

1. if C1 t C2 ∈ t then (i, t, C1 t C2) ` (i, t, E) when
ADRNC(i, t, C1 t C2, t, E));

2. if ∃R.C ∈ t then (i, t,∃R.C) ` (i, t′, C) when
ADRNC(i, t,∃R.C, t′, C);

3. if ∀R.C ∈ t then (i, t,∀R.C) ` (i, t′, C) whenever
∃R.E ∈ t and ADRNC(i, t,∃R.E, t′, E);

4. if C1 u C2 ∈ t then (i, t, C1 u C2) ` (i, t, C1) and
(i, t, C1 u C2) ` (i, t, C2);

5. if A#C ∈ t then (i, t,#C) ` (i + 1, t′, C) whenever
ADRNC(i, t, A#C , t

′, C);

6. if µA.C ∈ t then (i, t, µA.C) ` (i, t, C[µA.C/A]); and

7. if νA.C ∈ t then (i, t, νA.C) ` (i, t, C[νA.C/A]).

Note that the choice of t′ in (5) corresponds to the fact that
runs potentially connect all compatible pairs of types and thus
we must consider derivations through any of the compatible
types t′ in the next quasiworld. Similarly, we define a deriva-
tions of formulae in Ψi as follows:

1. if ψ1 ∨ ψ2 ∈ Ψi then (i, ψ1 ∨ ψ2) ` (i, ψ) when
ADRNF(i, ψ1 ∨ ψ2, ψ);

2. if ψ1 ∧ ψ2 ∈ Ψi then (i, ψ1 ∧ ψ2) ` (i, ψ1) and (i, ψ1 ∧
ψ2) ` (i, ψ1);

3. if P#ψ ∈ Ψi then (i,#ψ) ` (i+ 1, ψ);

4. if µx.ψ ∈ Ψi then (i, µx.ψ) ` (i, ψ[µx.ψ/x]); and

5. if νx.ψ ∈ Ψi then (i, νx.ψ) ` (i, ψ[νx.ψ/x]).

Similar to types in quasiworlds, the adornment relations can
be represented by unary predicates over W indexed by the
remaining parameters (as those are fixed for a givenALCµTL

formula ϕ). Derivation relations can then be captured, e.g., as
a S1S formula over these relations.

Definition 6 (Regenerating Sequence) Let i0, ik ∈ N . We
say that

• the concept µA.C is regenerated from i0 to ik if there is
a sequence i1, . . . , ik−1 ∈ N such that (ij , tij , Cij ) `
(ij+1, tij+1

, Cij+1
) such that Ci0 = Cik = µA.C and

each Cij contains µA.C as subconcept; and

• the formula µx.ψ is regenerated from i0 to ik if there
is a sequence i1, . . . , ik−1 ∈ N such that (ij , ψij ) `
(ij+1, ψij+1

) such that ψi0 = ψik = µx.ψ and each ψij
contains µx.ψ as subformula.

To make auxiliary concepts and formulas respect the seman-
tics of temporal connectives, we define the notion of run:

Definition 7 (Runs) Let W = 〈wi : i ∈ N〉 be a sequence
of quasiworlds of the form 〈Ti,Ψi〉, indexed by natural num-
bers. We say that a sequence r = 〈ti : i ∈ N〉, where
ti ⊆ conϕ, is a run if

1. ti ∈ Ti,
2. A#C ∈ ti iff C ∈ ti+1

and ADRNC(i, ti, A#C , ti+1, C);

3. µA.C ∈ ti iff C[µA.C/A] ∈ ti; and

4. νA.C ∈ ti iff C[νA.C/A] ∈ ti

for all i ∈ N .

Runs relate domain elements from the domains of different
quasiworlds yielding a coherent model for ϕ (here, the ability
to copy domain elements in the individual states sufficiently
many times is essential to have sufficiently many runs). We
use runs not involved in infinite regenerating sequences to re-
strict sequences of quasiworlds to those that properly abstract
models of an ALCµTL formula ϕ as follows:

Definition 8 (Quasimodel) Let W = 〈wi : i ∈ N〉 be a
sequence of quasiworlds of the form 〈Ti,Ψi〉, indexed by nat-
ural numbers. We say that W is a quasimodel for ϕ if

1. ϕ ∈ Ψ0;

2. for every t ∈ Ti and i ∈ N there is a run r such that
t = r(i);

3. p#ψ ∈ Ψi iff ψ ∈ Ψi+1;

4. µx.ψ ∈ Ψi iff ψ[µx.ψ/x] ∈ Ψi;

5. νx.ψ ∈ Ψi iff ψ[νx.ψ/x] ∈ Ψi; and

6. W is well-founded, i.e., there is no infinite sequence
i0, i1, . . . such that µA.C ∈ conϕ (µx.ψ ∈ subϕ) re-
generates from ij to ij+1 for all j ≥ 0.

Theorem 9 An ALCµTL formula ϕ is satisfiable if and only
if there is a quasimodel for ϕ.

Proof (sketch) Given a model of ϕ we show that a quasi-
model W for ϕ exists (this is analogous to the proof in



[Wolter and Zakharyaschev, 1999]); in addition we need
to show that we can construct an adornment ADRNC and
ADRNF for W (follows from the fact that every quasiworld
in W can be realised); for the other direction having a quasi-
model W and an adornment ADRNC and ADRNF we can
construct a realisation Ij of each quasiworld in wj ∈ W
that corresponds to the adornment; and then using these re-
alisations Ij from and runs we can construct a model for
ϕ; this is again analogous to the proof in [Wolter and Za-
kharyaschev, 1999], save the use of adornments to guarantee
well-foundedness of least fixpoints.

Thus, it suffices to check whether ϕ has a quasimodel. This
can be done, e.g., by embedding the quasimodel conditions
into S1S, similarly to [Hodkinson et al., 2000]. In particular,
S1S is more than sufficient to enforce the temporal fixpoint
conditions. To achieve tight complexity bounds, we can em-
ploy the fact that, for satisfiable ALCµ# formulas, periodic
quasimodels exist. We construct an automaton that accepts
exactly the quasimodels for ϕ: this automaton is a product of
an automaton that verifies the conditions on runs and a com-
plement of another automaton that detects infinite regenerat-
ing sequences for fixpoints; the technique is an adaptation of
a technique in [Vardi, 1988].

Theorem 10 The formula satisfiability problem forALCµTL

is EXPSPACE-complete.

The upper bound relies on the construction in [Vardi, 1988]
by observing that the input to the construction is exponential
in |ϕ|, hardness holds even for ALC2.

5 ALCµTL with previous-time operator
We now consider extending ALCµTL with past operators, in
particular the previous time ( ) operator. The natural exten-
sion of the semantics of ALCµTL are as follows:

( C)I(t) = CI(t−1)

and
I, t |=  ϕ iff I, t− 1 |= ϕ

for an integer-like flow of time (for natural numbers-like
flows we need two past operators to account for differences
for t = 0). To keep the description logic part first-order we re-
quire that each fixpoint variable (i.e., primitive concept name
or propositional variable) must occur in the scope of at least
one of the previous ( ) and next time (#) operators and, if
it occurs in the scope of multiple operators, the number of #
and  must be different (this ensures that fixpoint formulas
can regenerate only at different time instants). Note that this
logic properly contains ALCUS .

With these definitions we can reuse all of the machinery
introduced in Section 3 to obtain a tight EXPSPACE com-
plexity bound forALCµTL with both past ( ) and future (#)
temporal operators. The main technical difference is that for
checking for well foundedness of a quasimodel a two-way
automaton is needed [Vardi, 1988].

6 Temporal Fixpoints and Other Fragments
The decidability result can be extended to more powerful de-
scription logics and other decidable fragments of first-order
logic, in particular to the following:

Theorem 11 Satisfiability of the monodic fixpoint temporal
extensions of
• ALCO and

• ALCQ
is EXPSPACE-complete.

These results are based on patching the decidability proofs
in, e.g., [Wolter and Zakharyaschev, 1999; Hodkinson, 2002;
Artale et al., 2002] using our technique. In the first case
we add constants in the same fashion as in [Wolter and Za-
kharyaschev, 1999]: the quasiworlds will now have an ad-
ditional component of types realized by said constants. In
the second case we simply modify the derivation relation (for
∃R.C) in the notion of regeneration (Definition 6) to account
for the number restrictions. This modification is confined to
single quasiworlds and does not affect the remaining machin-
ery.

Consequently, the extension ofALCµTL with an ABOX—
allowing assertions of the form a : C and aR b, for a and b
names of individual objects in ∆, to be considered atomic for-
mulas alongside C v D—does not change the computational
properties of ALCµTL:

Theorem 12 The formula satisfiability problem forALCµTL

with an ABox is EXPSPACE-complete.

This follows immediately from the result for ALCO.
Our results also show that the temporal fixpoint extension

is mostly orthogonal to the consideration of the underlying
first-order fragment (as long as integer-like flow of time is
used).

7 Conclusion
The paper solves an open problem in [Franconi and Toman,
2003] and shows that a much more involved introduction of
temporal fixpoints in description logics still preserves decid-
ability and complexity bounds. The extension enhances the
expressive power of the languages: for example, evenness
is now definable over the temporal dimension. The techni-
cal contribution of the paper lies in a non-trivial extension of
the quasiworld technique to logics in which temporal opera-
tors (in our case defined by fixpoints) interact with the role
constructors of the underlying description logic and thus can-
not be captured by considering properties of individual runs
in a quasimodel alone (in contrast to the standard first-order
connectives U and S or the fixpoint extension proposed in
[Franconi and Toman, 2003]). The paper also paves a path to
fixpoint extensions of other decidable fragments of first-order
logics that have been shown decidable using the quasimodel
technique in the first-order temporal logic setting.



7.1 Open Problems
We are currently studying several extensions of the frame-
work proposed in this paper, namely:

• Allowing full ALCµTL; in this case, the concept de-
scriptions are no longer first-order in every temporal
world and the quasi-model technique cannot be applied
directly;

• Allowing inverses in the underlying description logic:
this complicates the construction of adornments (we
conjecture such an extension still preserves the EX-
PSPACE complexity bound but the development is be-
yond the scope of this paper), and

• Allowing other decidable formalisms, such as the
guarded fragment GF in a monodic combination with
temporal fixpoints.

Other extensions relate to studying temporal fixpoints for
other flows of time, to allowing even more expressive tem-
poral languages (e.g., S1S), and to investigating interaction
with queries [Artale et al., 2002].

Orthogonally, we can consider various restrictions on the
occurrence of temporal operators, e.g., only in concepts, with
an optional global set of DL axioms, or only in DL axioms
leaving concepts and roles non-temporal, along the lines in
[Lutz et al., 2008]. Yet another direction is to consider tempo-
ral fixpoints in connection with lightweight description logics
such as DL-Lite and EL and the problem of query answering
over knowledge bases based on fixpoint temporal description
logics.
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